This page is now not in use. Instead please refer to and add content to: PR #2118
- CNTT Hybrid Multi-Cloud Architecture (includes Edge)
- CNTT Edge Architecture
Topic Areas:
(RM Chapter 3 new section on Edge Computing w/o OpenStack specifics)
Edge deployment scenarios
Cloud Infrastructure (CI) deployment environment for different edge deployments:
Controlled: Indoors, Protected, and Restricted environments. Data Centers, Central Offices, Indoor venues. Operational benefits for installation and maintenance, and reduced need for hardening/ruggedized.
Exposed: Outdoors, Exposed, Harsh and Unprotected environments. Expensive rugged equipment
...
Cloud partitioning: Host Aggregates, Availability Zones
OpenStack Edge Reference Architecture provides more depth and details
Edge Deployments:
Small footprint edge device: only networking agents
...
SDN Networking support on Edge
(RM Potential Ch 2 as a specialised workoad type)
Network Function as a Service (NFaaS)
...
- NFaaS offered on one or more Cloud Services (Telco, HCP, others) including at the Edge
- Network integration and Service Chaining
- Security Considerations including delegated User Authentication & Authorization
- Commercial arrangements including User Management
(RM Ch03 as a sub-section of Introduction)
Hybrid Multi-Cloud Enabled Edge Architecture
(PG: In the above diagram, replace "Local" with "Metro")
- The Telco Operator may own and/or have partnerships and network connections to utilize multiple Clouds
- for network services, IT workloads, external subscribers
- On Prem Private
- Open source; Operator or Vendor deployed and managed | OpenStack or Kubernetes based
- Vendor developed; Operator or Vendor deployed and managed | Examples: Azure on Prem, VMWare, Packet, Nokia, Ericsson, etc.
- On Prem Public: Commercial Cloud service hosted at Operator location but for both Operator and Public use | Example: AWS Wavelength
- Outsourced Private: hosting outsourced; hosting can be at a Commercial Cloud Service | Examples: Equinix, AWS, etc.
- (Outsourced) Public: Commercial Cloud Service | Examples: AWS, Azure, VMWare, etc.
- Multiple different Clouds can be co-located in the same physical location and may share some of the physical infrastructure (for example, racks)
Type | System Developer | System Maintenance | System Operated & Managed by | Location where Deployed | Primary Resource Consumption Models |
---|---|---|---|---|---|
Private (Internal Users) | Open Source | Self/Vendor | Self/Vendor | On Prem | Reserved, Dedicated |
Private | Vendor | HCP | Self/Vendor | Self/Vendor | On Prem | Reserved, Dedicated |
Public | Vendor |
| HCP | Self/Vendor | Self/Vendor | On Prem | Reserved, On Demand |
Private | HCP | Vendor | Vendor | Vendor |
Locations | Reserved, Dedicated |
Public (All Users) |
HCP | Vendor | Vendor | Vendor Locations | On Demand, Reserved |
- Each Telco Cloud consists of multiple interconnected Regions
- A Telco Cloud Region may connect to multiple regions of another Telco Cloud (large capacity networks)
- A Telco Cloud also consists of interconnected local sites (multiple possible scenarios)
- A Telco Cloud's local site may connect to multiple Regions within that Telco Cloud or another Telco Cloud
- A Telco Cloud also consists of a large number of interconnected edge nodes
- Edge nodes may be impermanent
- A Telco Cloud's Edge node may connect to multiple local sites within that Telco Cloud or another Telco Cloud; an Edge node may rarely connect to an Telco Cloud Region
(RM Ch03 the new Edge Section)
Comparison of Edge terms from various Open Source Efforts
Characteristics | Other Terms | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNTT Term? | Compute | Storage | Networking | RTT* | Security | Scalability | Elasticity | Resiliency | Preferred Workload Architecture | Upgrades | OpenStack | OPNFV Edge | Edge Glossary | GSMA | |
Regional Data Center (DC) Fixed | 1000's Standardised >1 CPU >20 cores/CPU | 10's EB Standardised HDD and NVMe Permanence | >100 Gbps Standardised | ~100 ms | Highly Secure | Horizontal and unlimited scaling | Rapid spin up and down | Infrastructure architected for resiliency Redundancy for FT and HA | Microservices based Stateless Hosted on Containers | HW Refresh: ? Firmware: When required Platform SW: CD | Central Data Center | ||||
Metro Data Centers Fixed | 10's to 100's Standardised >1 CPU >20 cores/CPU | 100's PB Standardised NVMe on PCIe Permanence | > 100 Gbps Standardised | ~10 ms | Highly Secure | Horizontal but limited scaling | Rapid spin up and down | Infrastructure architected for some level of resiliency Redundancy for limited FT and HA | Microservices based Stateless Hosted on Containers | HW Refresh: ? Firmware: When required Platform SW: CD | Edge Site | Large Edge | Aggregation Edge | ||
Edge Fixed / Mobile | 10's Some Variability >=1 CPU >10 cores/CPU | 100 TB Standardised NVMe on PCIe Permanence / Ephemeral | 50 Gbps Standardised | ~5 ms | Low Level of Trust | Horizontal but highly constrained scaling, if any | Rapid spin up (when possible) and down | Applications designed for resiliency against infra failures No or highly limited redundancy | Microservices based Stateless Hosted on Containers | HW Refresh: ? Firmware: When required Platform SW: CD | Far Edge Site | Medium Edge | Access Edge / Aggregation Edge | ||
Mini-/Micro-Edge Mobile / Fixed | 1's High Variability Harsh Environments 1 CPU >2 cores/CPU | 10's GB NVMe Ephemeral Caching | 10 Gbps Connectivity not Guaranteed | <2 ms Located in network proximity of EUD/IoT | Untrusted | Limited Vertical Scaling (resizing) | Constrained | Applications designed for resiliency against infra failures No or highly limited redundancy | Microservices based or monolithic Stateless or Stateful Hosted on Containers or VMs Subject to QoS, adaptive to resource availability, viz. reduce resource consumption as they saturate | HW Refresh: ? Firmware: ? Platform SW: ? | Fog Computing (Mostly deprecated terminology) Extreme Edge Far Edge | Small Edge | Access Edge |
*RTT: Round Trip Times
EUD: End User Devices
IoT: Internet of Things