Introduction
Operators need to deploy new services in order to grow their revenue, and time to market, thus rapid network deployment, is crucial. Rapid deployment is significantly helped by automation and programmability. In this environment, the CLI is no longer the norm: since it cannot be easily used as a programmatic interface, the CLI is not suitable for automation. Network engineers have adapted to an industry where the only constant is change, by combining Development and Operations into DevOps: a practice that aims to unify software development and operations. DevOps combines programming and network administration, and allows rapid prototyping and network build, often using the Python programming language.
In order to support these requirements, in the last few years, a few emerging technologies and concepts have appeared and disrupted how network equipment is designed, and how networks are built and operated: hardware commoditization and disaggregation of software from hardware and of software itself, extensive use of open source (Linux), Software Defined Networking (SDN), Network Functions Virtualization (NFV) and DevOps.
...
Overview
OpenSwitch (OPX) – an open source network operating system (NOS) and ecosystem - is an early adopter of emerging concepts and technologies (hardware and software disaggregation, use of open source, SDN, NFV and DevOps) which disrupt how networks and networking equipment are built and operated. Designed using a standard Debian Linux distribution with an unmodified Linux kernel, OpenSwitch provides a programmable high-level abstraction of network components, such as switching ASICs (Network Processors) and optical transceivers. Architected as a scalable, cloud-ready, agile solution, the open source OpenSwitch software implements a flexible infrastructure to enable both network operators and vendors to rapidly on-board open source Networking OS applications. OpenSwitch provides a YANG based programmatic interface, that can be accessed using Python, thus providing an environment well-suited for DevOps.
...
- L2 protocols: LLDP, LACP (link aggregation interfaces), 802.1q (VLAN interfaces), STP and bridge interfaces
- L3 protocols (e.g. BGP)
- ACL and QoS network functions (through CPS / YANG API's)
- Instrumentation: sFlow, telemetry
- Orchestration and management
Programmability and AutomationAutomation
OpenSwitch supports a rich ecosystem for automated deployment, for instance:
- Ansible – various modules are already defined for OpenSwitch
- Zero-touch provisioning (ZTP) allows provisioning of OpenSwitch ONIE-enabled devices automatically, without manual intervention
- Puppet
North-Bound Programmatic Interfaces
The OpenSwitch CPS programmatic interface is defined using YANG models, and in combination with Python, provides support for programming the network functionality, automation and DevOps. While the CPS API is the native OpenSwitch API, a REST API can be added as well, by mapping REST requests to CPS.
In addition, a set of OpenSwitch specific commands are available and can be invoked from a Linux shell (e.g. display the current software version, hardware inventory etc.).
...
- FRR - BGP
- AAA: TACACS+, RADIUS
- Telemetry: Broadview, Packet Trakker
- Inocybe OpenDaylight integration
- NetSNMP
- Puppet
- Chef
It should be noted that these applications are not pre-installed with OpenSwitch. In a "disaggregated" model, users select applications to install them based on the requirements of a given network deployment.
In general, since OpenSwitch is based on Linux Debian distribution with an unmodified kernel, any Debian binary application can be installed and executed on OpenSwitch devices.
...